This documentation is for scikit-learn version 0.11-gitOther versions

Citing

If you use the software, please consider citing scikit-learn.

This page

8.15.1.22. sklearn.linear_model.RandomizedLogisticRegression

class sklearn.linear_model.RandomizedLogisticRegression(C=1, scaling=0.5, sample_fraction=0.75, n_resampling=200, selection_threshold=0.25, tol=0.001, fit_intercept=True, verbose=False, normalize=True, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None))

Randomized Logistic Regression

Randomized Regression works by resampling the train data and computing a LogisticRegression on each resampling. In short, the features selected more often are good features. It is also known as stability selection.

Parameters :

C : float

The regularization parameter C in the LogisticRegression.

scaling : float

The alpha parameter in the stability selection article used to randomly scale the features. Should be between 0 and 1.

sample_fraction : float

The fraction of samples to be used in each randomized design. Should be between 0 and 1. If 1, all samples are used.

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).

verbose : boolean or integer, optional

Sets the verbosity amount

normalize : boolean, optional

If True, the regressors X are normalized

tol : float, optional

tolerance for stopping criteria of LogisticRegression

n_jobs : integer, optional

Number of CPUs to use during the resampling. If ‘-1’, use all the CPUs

random_state : int, RandomState instance or None, optional (default=None)

If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

pre_dispatch : int, or string, optional

Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be:

  • None, in which case all the jobs are immediatly created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs
  • An int, giving the exact number of total jobs that are spawned
  • A string, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

memory : Instance of joblib.Memory or string

Used for internal caching. By default, no caching is done. If a string is given, it is thepath to the caching directory.

Notes

See examples/linear_model/plot_randomized_lasso.py for an example.

References

Stability selection Nicolai Meinshausen, Peter Buhlmann Journal of the Royal Statistical Society: Series B Volume 72, Issue 4, pages 417-473, September 2010 DOI: 10.1111/j.1467-9868.2010.00740.x

Examples

>>> from sklearn.linear_model import RandomizedLogisticRegression
>>> randomized_logistic = RandomizedLogisticRegression()

Attributes

scores_ array, shape = [n_features] Feature scores between 0 and 1.
all_scores_ array, shape = [n_features, n_reg_parameter] Feature scores between 0 and 1 for all values of the regularization parameter. The reference article suggests scores_ is the max of all_scores_.

Methods

fit(X, y) Fit the model using X, y as training data.
fit_transform(X[, y]) Fit to data, then transform it
get_params([deep]) Get parameters for the estimator
get_support([indices]) Return a mask, or list, of the features/indices selected.
inverse_transform(X) Transform a new matrix using the selected features
set_params(**params) Set the parameters of the estimator.
transform(X) Transform a new matrix using the selected features
__init__(C=1, scaling=0.5, sample_fraction=0.75, n_resampling=200, selection_threshold=0.25, tol=0.001, fit_intercept=True, verbose=False, normalize=True, random_state=None, n_jobs=1, pre_dispatch='3*n_jobs', memory=Memory(cachedir=None))
fit(X, y)

Fit the model using X, y as training data.

Parameters :

X : array-like, shape = [n_samples, n_features]

training data.

y : array-like, shape = [n_samples]

target values.

Returns :

self : object

returns an instance of self.

fit_transform(X, y=None, **fit_params)

Fit to data, then transform it

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters :

X : numpy array of shape [n_samples, n_features]

Training set.

y : numpy array of shape [n_samples]

Target values.

Returns :

X_new : numpy array of shape [n_samples, n_features_new]

Transformed array.

Notes

This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of fit_transform, unlike other transformers such as PCA.

get_params(deep=True)

Get parameters for the estimator

Parameters :

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

get_support(indices=False)

Return a mask, or list, of the features/indices selected.

inverse_transform(X)

Transform a new matrix using the selected features

set_params(**params)

Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns :self :
transform(X)

Transform a new matrix using the selected features