8.15.1.23. sklearn.linear_model.lasso_path¶
- sklearn.linear_model.lasso_path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, fit_intercept=True, normalize=False, copy_X=True, verbose=False, **params)¶
- Compute Lasso path with coordinate descent - The optimization objective for Lasso is: - (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 - Parameters : - X : numpy array of shape [n_samples,n_features] - Training data. Pass directly as fortran contiguous data to avoid unnecessary memory duplication - y : numpy array of shape [n_samples] - Target values - eps : float, optional - Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3 - n_alphas : int, optional - Number of alphas along the regularization path - alphas : numpy array, optional - List of alphas where to compute the models. If None alphas are set automatically - precompute : True | False | ‘auto’ | array-like - Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let us decide. The Gram matrix can also be passed as argument. - Xy : array-like, optional - Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. - fit_intercept : bool - Fit or not an intercept - normalize : boolean, optional - If True, the regressors X are normalized - copy_X : boolean, optional, default True - If True, X will be copied; else, it may be overwritten. - verbose : bool or integer - Amount of verbosity - params : kwargs - keyword arguments passed to the Lasso objects - Returns : - models : a list of models along the regularization path - See also - lars_path, Lasso, LassoLars, LassoCV, LassoLarsCV, sklearn.decomposition.sparse_encode - Notes - See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. - To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran contiguous numpy array. 
