8.15.1.4. sklearn.linear_model.RidgeCV¶
- class sklearn.linear_model.RidgeCV(alphas=array([ 0.1, 1., 10. ]), fit_intercept=True, normalize=False, score_func=None, loss_func=None, cv=None, gcv_mode=None)¶
Ridge regression with built-in cross-validation.
By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation.
Parameters : alphas: numpy array of shape [n_alpha] :
Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as LogisticRegression or LinearSVC.
fit_intercept : boolean
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
normalize : boolean, optional
If True, the regressors X are normalized
score_func: callable, optional :
function that takes 2 arguments and compares them in order to evaluate the performance of prediction (big is good) if None is passed, the score of the estimator is maximized
loss_func: callable, optional :
function that takes 2 arguments and compares them in order to evaluate the performance of prediction (small is good) if None is passed, the score of the estimator is maximized
cv : cross-validation generator, optional
If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used.
gcv_mode: {None, ‘auto’, ‘svd’, eigen’}, optional :
Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:
'auto' : use svd if n_samples > n_features, otherwise use eigen 'svd' : force computation via svd of X 'eigen' : force computation via eigendecomposition of X^T X
The ‘auto’ mode is the default and is intended to pick the cheaper option of the two depending upon the shape of the training data.
See also
Methods
decision_function(X) Decision function of the linear model fit(X, y[, sample_weight]) Fit Ridge regression model get_params([deep]) Get parameters for the estimator predict(X) Predict using the linear model score(X, y) Returns the coefficient of determination R^2 of the prediction. set_params(**params) Set the parameters of the estimator. - __init__(alphas=array([ 0.1, 1., 10. ]), fit_intercept=True, normalize=False, score_func=None, loss_func=None, cv=None, gcv_mode=None)¶
- decision_function(X)¶
Decision function of the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- fit(X, y, sample_weight=1.0)¶
Fit Ridge regression model
Parameters : X : array-like, shape = [n_samples, n_features]
Training data
y : array-like, shape = [n_samples] or [n_samples, n_responses]
Target values
sample_weight : float or array-like of shape [n_samples]
Sample weight
Returns : self : Returns self.
- get_params(deep=True)¶
Get parameters for the estimator
Parameters : deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- predict(X)¶
Predict using the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- score(X, y)¶
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns : z : float
- set_params(**params)¶
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : self :