8.15.1.4. sklearn.linear_model.RidgeCV¶
- class sklearn.linear_model.RidgeCV(alphas=array([ 0.1, 1., 10. ]), fit_intercept=True, normalize=False, score_func=None, loss_func=None, cv=None, gcv_mode=None)¶
- Ridge regression with built-in cross-validation. - By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. - Parameters : - alphas: numpy array of shape [n_alpha] : - Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as LogisticRegression or LinearSVC. - fit_intercept : boolean - Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). - normalize : boolean, optional - If True, the regressors X are normalized - score_func: callable, optional : - function that takes 2 arguments and compares them in order to evaluate the performance of prediction (big is good) if None is passed, the score of the estimator is maximized - loss_func: callable, optional : - function that takes 2 arguments and compares them in order to evaluate the performance of prediction (small is good) if None is passed, the score of the estimator is maximized - cv : cross-validation generator, optional - If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. - gcv_mode: {None, ‘auto’, ‘svd’, eigen’}, optional : - Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are: - 'auto' : use svd if n_samples > n_features, otherwise use eigen 'svd' : force computation via svd of X 'eigen' : force computation via eigendecomposition of X^T X - The ‘auto’ mode is the default and is intended to pick the cheaper option of the two depending upon the shape of the training data. - See also - Methods - decision_function(X) - Decision function of the linear model - fit(X, y[, sample_weight]) - Fit Ridge regression model - get_params([deep]) - Get parameters for the estimator - predict(X) - Predict using the linear model - score(X, y) - Returns the coefficient of determination R^2 of the prediction. - set_params(**params) - Set the parameters of the estimator. - __init__(alphas=array([ 0.1, 1., 10. ]), fit_intercept=True, normalize=False, score_func=None, loss_func=None, cv=None, gcv_mode=None)¶
 - decision_function(X)¶
- Decision function of the linear model - Parameters : - X : numpy array of shape [n_samples, n_features] - Returns : - C : array, shape = [n_samples] - Returns predicted values. 
 - fit(X, y, sample_weight=1.0)¶
- Fit Ridge regression model - Parameters : - X : array-like, shape = [n_samples, n_features] - Training data - y : array-like, shape = [n_samples] or [n_samples, n_responses] - Target values - sample_weight : float or array-like of shape [n_samples] - Sample weight - Returns : - self : Returns self. 
 - get_params(deep=True)¶
- Get parameters for the estimator - Parameters : - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 - predict(X)¶
- Predict using the linear model - Parameters : - X : numpy array of shape [n_samples, n_features] - Returns : - C : array, shape = [n_samples] - Returns predicted values. 
 - score(X, y)¶
- Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse. - Parameters : - X : array-like, shape = [n_samples, n_features] - Training set. - y : array-like, shape = [n_samples] - Returns : - z : float 
 - set_params(**params)¶
- Set the parameters of the estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. - Returns : - self : 
 
