5.2.3.1.2. sklearn.linear_model.RidgeClassifierCV¶
- class sklearn.linear_model.RidgeClassifierCV(alphas=array([ 0.1, 1., 10. ]), fit_intercept=True, normalize=False, score_func=None, loss_func=None, cv=None, gcv_mode=None)¶
- Methods - decision_function(X) - fit(X, y[, sample_weight, class_weight]) - Fit the ridge classifier. - get_params([deep]) - Get parameters for the estimator - predict(X) - Predict target values according to the fitted model. - score(X, y) - Returns the coefficient of determination R^2 of the prediction. - set_params(**params) - Set the parameters of the estimator. - __init__(alphas=array([ 0.1, 1., 10. ]), fit_intercept=True, normalize=False, score_func=None, loss_func=None, cv=None, gcv_mode=None)¶
 - fit(X, y, sample_weight=1.0, class_weight=None)¶
- Fit the ridge classifier. - Parameters : - X : array-like, shape = [n_samples, n_features] - Training vectors, where n_samples is the number of samples and n_features is the number of features. - y : array-like, shape = [n_samples] - Target values. - sample_weight : float or numpy array of shape [n_samples] - Sample weight - class_weight : dict, optional - Weights associated with classes in the form {class_label : weight}. If not given, all classes are supposed to have weight one. - Returns : - self : object - Returns self. 
 - get_params(deep=True)¶
- Get parameters for the estimator - Parameters : - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 - predict(X)¶
- Predict target values according to the fitted model. - Parameters : - X : array-like, shape = [n_samples, n_features] - Returns : - y : array, shape = [n_samples] 
 - score(X, y)¶
- Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse. - Parameters : - X : array-like, shape = [n_samples, n_features] - Training set. - y : array-like, shape = [n_samples] - Returns : - z : float 
 - set_params(**params)¶
- Set the parameters of the estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. - Returns : - self : 
 
