8.16.2. sklearn.manifold.Isomap¶
- class sklearn.manifold.Isomap(n_neighbors=5, out_dim=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto')¶
- Isomap Embedding - Non-linear dimensionality reduction through Isometric Mapping - Parameters : - n_neighbors : integer - number of neighbors to consider for each point. - out_dim : integer - number of coordinates for the manifold - eigen_solver : [‘auto’|’arpack’|’dense’] - ‘auto’ : attempt to choose the most efficient solver
- for the given problem. 
- ‘arpack’ : use Arnoldi decomposition to find the eigenvalues
- and eigenvectors. Note that arpack can handle both dense and sparse data efficiently 
- ‘dense’ : use a direct solver (i.e. LAPACK)
- for the eigenvalue decomposition. 
 - tol : float - convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == ‘dense’ - max_iter : integer - maximum number of iterations for the arpack solver. not used if eigen_solver == ‘dense’ - path_method : string [‘auto’|’FW’|’D’] - method to use in finding shortest path. ‘auto’ : attempt to choose the best algorithm automatically ‘FW’ : Floyd-Warshall algorithm ‘D’ : Dijkstra algorithm with Fibonacci Heaps - neighbors_algorithm : string [‘auto’|’brute’|’kd_tree’|’ball_tree’] - algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance - References - [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric
- framework for nonlinear dimensionality reduction. Science 290 (5500)
 - Attributes - embedding_ - array-like, shape (n_samples, out_dim) - Stores the embedding vectors - kernel_pca_ - KernelPCA object used to implement the embedding - training_data_ - array-like, shape (n_samples, n_features) - Stores the training data - nbrs_ - sklearn.neighbors.NearestNeighbors instance - Stores nearest neighbors instance, including BallTree or KDtree if applicable. - dist_matrix_ - array-like, shape (n_samples, n_samples) - Stores the geodesic distance matrix of training data - Methods - fit(X[, y]) - Compute the embedding vectors for data X - fit_transform(X[, y]) - Fit the model from data in X and transform X. - get_params([deep]) - Get parameters for the estimator - reconstruction_error() - Compute the reconstruction error for the embedding. - set_params(**params) - Set the parameters of the estimator. - transform(X) - Transform X. - __init__(n_neighbors=5, out_dim=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto')¶
 - fit(X, y=None)¶
- Compute the embedding vectors for data X - Parameters : - X : {array-like, sparse matrix, BallTree, cKDTree, NearestNeighbors} - Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. - Returns : - self : returns an instance of self. 
 - fit_transform(X, y=None)¶
- Fit the model from data in X and transform X. - Parameters : - X: {array-like, sparse matrix, BallTree, cKDTree} : - Training vector, where n_samples in the number of samples and n_features is the number of features. - Returns : - X_new: array-like, shape (n_samples, out_dim) : 
 - get_params(deep=True)¶
- Get parameters for the estimator - Parameters : - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 - reconstruction_error()¶
- Compute the reconstruction error for the embedding. - Returns : - reconstruction_error : float - Notes - The cost function of an isomap embedding is - E = frobenius_norm[K(D) - K(D_fit)] / n_samples - Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output embedding X_fit, and K is the isomap kernel: - K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples) 
 - set_params(**params)¶
- Set the parameters of the estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. - Returns : - self : 
 - transform(X)¶
- Transform X. - This is implemented by linking the points X into the graph of geodesic distances of the training data. First the n_neighbors nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. - Parameters : - X: array-like, shape (n_samples, n_features) : - Returns : - X_new: array-like, shape (n_samples, out_dim) : 
 
