8.16.3. sklearn.manifold.locally_linear_embedding¶
- sklearn.manifold.locally_linear_embedding(X, n_neighbors, out_dim, reg=0.001, eigen_solver='auto', tol=1e-06, max_iter=100, method='standard', hessian_tol=0.0001, modified_tol=1e-12, random_state=None)¶
- Perform a Locally Linear Embedding analysis on the data. - Parameters : - X : {array-like, sparse matrix, BallTree, cKDTree, NearestNeighbors} - Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. - n_neighbors : integer - number of neighbors to consider for each point. - out_dim : integer - number of coordinates for the manifold. - reg : float - regularization constant, multiplies the trace of the local covariance matrix of the distances. - eigen_solver : string, {‘auto’, ‘arpack’, ‘dense’} - auto : algorithm will attempt to choose the best method for input data - arpack : use arnoldi iteration in shift-invert mode.
- For this method, M may be a dense matrix, sparse matrix, or general linear operator. 
- dense : use standard dense matrix operations for the eigenvalue
- decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. 
 - tol : float, optional - Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’. - max_iter : integer - maximum number of iterations for the arpack solver. - method : {‘standard’, ‘hessian’, ‘modified’, ‘ltsa’} - standard : use the standard locally linear embedding algorithm.
- see reference [R68] 
- hessian : use the Hessian eigenmap method. This method requires
- n_neighbors > out_dim * (1 + (out_dim + 1) / 2. see reference [R69] 
- modified : use the modified locally linear embedding algorithm.
- see reference [R70] 
- ltsa : use local tangent space alignment algorithm
- see reference [R71] 
 - hessian_tol : float, optional - Tolerance for Hessian eigenmapping method. Only used if method == ‘hessian’ - modified_tol : float, optional - Tolerance for modified LLE method. Only used if method == ‘modified’ - random_state: numpy.RandomState, optional : - The generator used to initialize the centers. Defaults to numpy.random. - Returns : - Y : array-like, shape [n_samples, out_dim] - Embedding vectors. - squared_error : float - Reconstruction error for the embedding vectors. Equivalent to norm(Y - W Y, 'fro')**2, where W are the reconstruction weights. - References - [R68] - (1, 2) Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000). - [R69] - (1, 2) Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003). - [R70] - (1, 2) Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 - [R71] - (1, 2) Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004) 
