This documentation is for scikit-learn version 0.11-gitOther versions

Citing

If you use the software, please consider citing scikit-learn.

This page

0.11

API changes summary

  • NeighborsClassifier and NeighborsRegressor are gone in the module Nearest Neighbors. Use the classes KNeighborsClassifier, RadiusNeighborsClassifier, KNeighborsRegressor and/or RadiusNeighborsRegressor instead.

0.10

Changelog

API changes summary

Here are the code migration instructions when updgrading from scikit-learn version 0.9:

  • Some estimators that may overwrite their inputs to save memory previously had overwrite_ parameters; these have been replaced with copy_ parameters with exactly the opposite meaning.

    This particularly affects some of the estimators in linear_model. The default behavior is still to copy everything passed in.

  • The SVMlight dataset loader sklearn.datasets.load_svmlight_file no longer supports loading two files at once; use load_svmlight_files instead. Also, the (unused) buffer_mb parameter is gone.

  • Sparse estimators in the Stochastic Gradient Descent module use dense parameter vector coef_ instead of sparse_coef_. This significantly improves test time performance.

  • The Covariance estimation module now has a robust estimator of covariance, the Minimum Covariance Determinant estimator.

  • Cluster evaluation metrics in metrics.cluster have been refactored but the changes are backwards compatible. They have been moved to the metrics.cluster.supervised, along with metrics.cluster.unsupervised which contains the Silhouette Coefficient.

  • The permutation_test_score function now behaves the same way as cross_val_score (i.e. uses the mean score across the folds.)

  • Cross Validation generators now use integer indices (indices=True) by default instead of boolean masks. This make it more intuitive to use with sparse matrix data.

  • The functions used for sparse coding, sparse_encode and sparse_encode_parallel have been combined into sklearn.decomposition.sparse_encode, and the shapes of the arrays have been transposed for consistency with the matrix factorization setting, as opposed to the regression setting.

  • Fixed an off-by-one error in the SVMlight/LibSVM file format handling; files generated using sklearn.datasets.dump_svmlight_file should be re-generated. (They should continue to work, but accidentally had one extra column of zeros prepended.)

  • BaseDictionaryLearning class replaced by SparseCodingMixin.

  • sklearn.utils.extmath.fast_svd has been renamed sklearn.utils.extmath.randomized_svd and the default oversampling is now fixed to 10 additional random vectors instead of doubling the number of components to extract. The new behavior follows the reference paper.

People

The following people contributed to scikit-learn since last release:

0.9

scikit-learn 0.9 was released on September 2011, three months after the 0.8 release and includes the new modules Manifold learning, The Dirichlet Process as well as several new algorithms and documentation improvements.

This release also includes the dictionary-learning work developed by Vlad Niculae as part of the Google Summer of Code program.

banner2 banner1 banner3

Changelog

API changes summary

Here are the code migration instructions when updgrading from scikit-learn version 0.8:

  • The scikits.learn package was renamed sklearn. There is still a scikits.learn package alias for backward compatibility.

    Third-party projects with a dependency on scikit-learn 0.9+ should upgrade their codebase. For instance under Linux / MacOSX just run (make a backup first!):

    find -name "*.py" | xargs sed -i 's/\bscikits.learn\b/sklearn/g'
  • Estimators no longer accept model parameters as fit arguments: instead all parameters must be only be passed as constructor arguments or using the now public set_params method inhereted from base.BaseEstimator.

    Some estimators can still accept keyword arguments on the fit but this is restricted to data-dependent values (e.g. a Gram matrix or an affinity matrix that are precomputed from the X data matrix.

  • The cross_val package has been renamed to cross_validation although there is also a cross_val package alias in place for backward compatibility.

    Third-party projects with a dependency on scikit-learn 0.9+ should upgrade their codebase. For instance under Linux / MacOSX just run (make a backup first!):

    find -name "*.py" | xargs sed -i 's/\bcross_val\b/cross_validation/g'
  • The score_func argument of the sklearn.cross_validation.cross_val_score function is now expected to accept y_test and y_predicted as only arguments for classification and regression tasks or X_test for unsupervised estimators.

  • gamma parameter for support vector machine algorithms is set to 1 / n_features by default, instead of 1 / n_samples.

  • The sklearn.hmm has been marked as orphaned: it will be removed from scikit-learn in version 0.11 unless someone steps up to contribute documentation, examples and fix lurking numerical stability issues.

  • sklearn.neighbors has been made into a submodule. The two previously available estimators, NeighborsClassifier and NeighborsRegressor have been marked as deprecated. Their functionality has been divided among five new classes: NearestNeighbors for unsupervised neighbors searches, KNeighborsClassifier & RadiusNeighborsClassifier for supervised classification problems, and KNeighborsRegressor & RadiusNeighborsRegressor for supervised regression problems.

  • sklearn.ball_tree.BallTree has been moved to sklearn.neighbors.BallTree. Using the former will generate a warning.

  • sklearn.linear_model.LARS() and related classes (LassoLARS, LassoLARSCV, etc.) have been renamed to sklearn.linear_model.Lars().

  • All distance metrics and kernels in sklearn.metrics.pairwise now have a Y parameter, which by default is None. If not given, the result is the distance (or kernel similarity) between each sample in Y. If given, the result is the pairwise distance (or kernel similarity) between samples in X to Y.

  • sklearn.metrics.pairwise.l1_distance is now called manhattan_distance, and by default returns the pairwise distance. For the component wise distance, set the parameter sum_over_features to False.

Backward compatibilty package aliases and other deprecated classes and functions will be removed in version 0.11.

People

38 people contributed to this release.

0.8

scikit-learn 0.8 was released on May 2011, one month after the first “international” scikit-learn coding sprint and is marked by the inclusion of important modules: Hierarchical clustering, Partial Least Squares, Non-negative matrix factorization (NMF or NNMF), initial support for Python 3 and by important enhacements and bug fixes.

Changelog

Several new modules where introduced during this release:

Some other modules benefited from significant improvements or cleanups.

People

People that made this release possible preceeded by number of commits:

0.7

scikit-learn 0.7 was released in March 2011, roughly three months after the 0.6 release. This release is marked by the speed improvements in existing algorithms like k-Nearest Neighbors and K-Means algorithm and by the inclusion of an efficient algorithm for computing the Ridge Generalized Cross Validation solution. Unlike the preceding release, no new modules where added to this release.

Changelog

People

People that made this release possible preceeded by number of commits:

0.6

scikit-learn 0.6 was released on december 2010. It is marked by the inclusion of several new modules and a general renaming of old ones. It is also marked by the inclusion of new example, including applications to real-world datasets.

Changelog

People

People that made this release possible preceeded by number of commits:

0.5

Changelog

New classes

Documentation

Fixes

  • API changes: adhere variable names to PEP-8, give more meaningful names.
  • Fixes for svm module to run on a shared memory context (multiprocessing).
  • It is again possible to generate latex (and thus PDF) from the sphinx docs.

Examples

External dependencies

  • Joblib is now a dependencie of this package, although it is shipped with (sklearn.externals.joblib).

Removed modules

  • Module ann (Artificial Neural Networks) has been removed from the distribution. Users wanting this sort of algorithms should take a look into pybrain.

Misc

  • New sphinx theme for the web page.

Authors

The following is a list of authors for this release, preceeded by number of commits:

  • 262 Fabian Pedregosa
  • 240 Gael Varoquaux
  • 149 Alexandre Gramfort
  • 116 Olivier Grisel
  • 40 Vincent Michel
  • 38 Ron Weiss
  • 23 Matthieu Perrot
  • 10 Bertrand Thirion
  • 7 Yaroslav Halchenko
  • 9 VirgileFritsch
  • 6 Edouard Duchesnay
  • 4 Mathieu Blondel
  • 1 Ariel Rokem
  • 1 Matthieu Brucher

0.4

Changelog

Major changes in this release include:

  • Coordinate Descent algorithm (Lasso, ElasticNet) refactoring & speed improvements (roughly 100x times faster).
  • Coordinate Descent Refactoring (and bug fixing) for consistency with R’s package GLMNET.
  • New metrics module.
  • New GMM module contributed by Ron Weiss.
  • Implementation of the LARS algorithm (without Lasso variant for now).
  • feature_selection module redesign.
  • Migration to GIT as content management system.
  • Removal of obsolete attrselect module.
  • Rename of private compiled extensions (aded underscore).
  • Removal of legacy unmaintained code.
  • Documentation improvements (both docstring and rst).
  • Improvement of the build system to (optionally) link with MKL. Also, provide a lite BLAS implementation in case no system-wide BLAS is found.
  • Lots of new examples.
  • Many, many bug fixes ...

Authors

The committer list for this release is the following (preceded by number of commits):

  • 143 Fabian Pedregosa
  • 35 Alexandre Gramfort
  • 34 Olivier Grisel
  • 11 Gael Varoquaux
  • 5 Yaroslav Halchenko
  • 2 Vincent Michel
  • 1 Chris Filo Gorgolewski