Download
Support
User Guide
Examples
Development
previous
|
next
|
modules
|
modules
|
index
This page
4. Unsupervised learning
4. Unsupervised learning
ΒΆ
4.1. Gaussian mixture models
4.1.1. GMM classifier
4.2. Clustering
4.2.1. K-means
4.2.2. Affinity propagation
4.2.3. Mean Shift
4.2.4. Spectral clustering
4.2.5. Hierarchical clustering
4.2.5.1. Adding connectivity constraints
4.3. Decomposing signals in components (matrix factorization problems)
4.3.1. Principal component analysis (PCA)
4.3.1.1. Exact PCA and probabilistic interpretation
4.3.1.2. Approximate PCA
4.3.1.3. Kernel PCA
4.3.2. Independent component analysis (ICA)
4.3.3. Non-negative matrix factorization (NMF)
4.4. Covariance estimation
4.4.1. Empirical covariance
4.4.2. Shrunk Covariance
4.4.2.1. Basic shrinkage
4.4.2.2. Ledoit-Wolf shrinkage
4.4.2.3. Oracle Approximating Shrinkage