- 1. Installing scikits.learn
- 2. Getting started: an introduction to machine learning with scikits.learn
- 3. Supervised learning
- 3.1. Generalized Linear Models
- 3.2. Support Vector Machines
- 3.3. Stochastic Gradient Descent
- 3.4. Nearest Neighbors
- 3.5. Feature selection
- 3.6. Gaussian Processes
- 3.7. Partial Least Squares
- 3.8. Naive Bayes
- 4. Unsupervised learning
- 5. Model Selection
- 6. Dataset loading utilities
- 7. Class Reference
- 7.1. Support Vector Machines
- 7.2. Generalized Linear Models
- 7.3. Naive Bayes
- 7.4. Nearest Neighbors
- 7.5. Gaussian Mixture Models
- 7.6. Hidden Markov Models
- 7.7. Clustering
- 7.8. Metrics
- 7.9. Covariance Estimators
- 7.10. Signal Decomposition
- 7.11. Linear Discriminant Analysis
- 7.12. Cross Validation
- 7.13. Grid Search
- 7.14. Feature Selection
- 7.15. Feature Extraction
- 7.16. Pipeline
- 7.17. Partial Least Squares